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My astrophysics colleague Fritz ROpke is an expert in simulating supernovae la
explosions. Here is a simulation of his of a supernovae la explosion.
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® convection in stars

convection zone

PHOTOSPHERE

CONVECTION
ZONE

RADIATION
ZONE




The Euler equations with gravity:

Oip + Oi(pv') = 0
O(pv’) + 0i(pv'v’ +0Vp) = pg’
Ore + 0;(v' (e + p)) = pg'v? by,

non-dimensionalize these equations:

Str d;p + 0;(pv') = 0
. ~ . 1 ..~ 1
Str 9;(pt?) + i (po'?) + —5090;p = pi —
rO(pv7) + 0PV ) + 500D = PY

Str 9;¢ + 0;(0" (e + p)) = pv'y’ 0ii 72

obtain Mach, Froude & Strouhal numbers



means time scale depends

set Strouhal number = 1 on length and velocity scale J Gmf'fY
set Froude number = Mach number g;av;;',iggfggg:;y@y - f f /
Pressure

- 1 space dim.

&,;p — —p@xgb - stationary

- set velocity = 0 Hydrostatic equilibrium

Consider flow that is a perturbation of the hydrostatic equilibrium, the flow is then
close to incompressible flow.

Thus we need a solver that

- maintains hydrostatic equilibria well
- can solve low (as well as high) Mach number flow well



our goal:
e for the Euler equations with gravity find a scheme that

solves both low and high Mach numbers flow

IS well balanced

IS stable
preserves kinetic energy for low Mach numbers

W~



We begin by considering the homogeneous Euler equations

dp
E—l—v'(p’v)—()
Ipv FV-(pr®v)+Vp=0
ot
OpE

> -V - (pEv)+ V- (pv) =0

Goal. find a scheme that solves both low and high number well.



solve this using a finite volume scheme

astrophysicists like to use the Roe scheme

F
>  Godunov-type numerical flux function (quasilinear, flux Jacobian A(U) = —)

z+1/2 — @1/2 ARUDQJAQ ZJD

physical flux “upwind term”, numerical dissipation

-




“dissipation”

central flux
8fk f

A:U 2A:U 2A:U

)i + higher oder terms

\

of" AR NN

— ~ O(1 O(1 Oh — ! L

e ey |sn o e
Roe@i,i+1 O(M) O(M) O‘Cﬁj'

for low Mach number the dissipation dominates central flux



thus one needs to modify the dissipation term

Find a modification such that

e for high Mach it behaves like the Roe scheme

e for low Mach number the dissipation of the stabilization term is
sufficiently low

e for flow near the incompressible regime the total kinetic energy
Is well conserved

e the scheme is linearly stable



stability:

Near the incompressible regime, the solver discretizes the divergence free
condition for the velocity, a checkerboard instability may arise.

PressureField
0 le+8 2e+8 3e+8 4e+8
T




We identified in a linear stability analysis that these modes survive neutral
stability. Hence we do not allow that, and these instabilities go away.

n n 1 n n n n n
U. = Uz — iV (A(Uq,-|-1 — Ui—l) — D(Ui—l—l - 2UZ T Ui—l))

(2

U; = Z U" exp(jikAx)
keZz
U™ = [id — v (Ajsin 8 + D(1 — cos 8))]U"

|
| id — v (Ajsin 8+ D(1 —cos §))|| < 1



Kinetic energy:

near the incompressible regime, one can show that the solution preserves

Kinetic energy.
heme should maintain Kinetic

new SC
energy for low Mach number
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It is tricky to find a dissipation matrix that satisfies all these conditions,
especially in two space dimensions, but here is one example:

(1 n, 2OMx nyM PRALLE 0 \
)
)
0 0 1 0 Ty SoAT
)
0 0 0 1 Tz ST,
\O ngpcolM, nypcoM, n,pcoM, 1 )
1 .
y = ; —1 1 = min|1, max(Mocal)]

It adapts to the local Mach number, thus resorting back to Roe’s scheme for Mach
number ~ 1



consistency of the moditied scheme with incompressible
flow for M -> 0O

e.g. pressure to highest order:

p(z,t) = p'® (z,t) + Mp'" (z,t) + M*p? (z,t) + O(M?)

to highest order:

0 0

1 1 | Pi+r —Pi-1 v 1 | P 2pi + pi—1
0 0
0 0

pi —pi =0 =01



Implicit time integration

»  gspatial discretization ("“method of lines”) yields

>  explicit time integration — stability requires limiting of time step due to sound speed:

u4¢ c

Atexplicit S CFL

» implicit time integration = accuracy requires limiting of time step due to fluid velocity:
Ax

Atimplicit S CFL-—
[l

> gain: implicit time step larger by factor 1/M
>  tests imply that implicit time stepping more efficient below M ~ 0.2



To solve this implicitly we need to solve a very large system
of equations.

We can show that the condition number of our new scheme
IS rather good.

e for the Euler equations find a scheme that

1. solves both low and high Mach numbers flow

2. 1s stable
3. preserves kinetic energy for low Mach numbers

4. the inversion of the large linear system arising from implicit time
discretization has a good condition number



Scaling on HPC systems

Strong scaling results
on JUQUEEN

Test problem: Taylor—
Green vortex on 5123
grid

All runs performed
with 16 MPI tasks per
node and 4 threads
per task using the
BiCGSTAB(5) solver

speed-up

4096
128 0

number of threads

8192

—o— SLH
---1ideal

16384 32768 65536 131072 262144 524288

1024

2048

4096 8192 16384 32768 65536 131072
number of processes



This is a “Gresho vortex” with an un-modified Roe scheme:

|




decay of kinetic energy for the un-modified Roe scheme:
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This is a “Gresho vortex” with the modified scheme tested down to M., v—= 1071
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log(E(k)/E (ko))

turbulence spectrum of
incompressible flow a la
Kolomogorov

same with presented as a
compensated spectrum

inertial
subrange

kLo log(k) k%

inertial \
subrange \

kLo log(k) k%




simulation of 3 space dim. decaying turbulence
at very low Mach numbers

a 2-d cut through the simulation
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We continue by considering the Euler equations with gravity

First we find a well balanced method



The system of Euler equations with gravity

(8t,0 + Ozpu =0
Oipu + Op (pu” + p) = —p0yd
OtE + Op(u(E + p)) = —pudyé

_/\

@ p: density
u: velocity
E = pe+ pu?/2: total energy, with e the internal energy
p = p(p, €): pressure given by a general law
¢(z): gravitational potential (example: ¢(x) = gr)

@ Hyperbolicity assumption:

2= P + %(%p > ()



The system of Euler equations with gravity

(&5,0 + Ozpu =0
Opu + Oy (pu® + p) = —p0y¢d
OtE + O0p(u(E + p)) = —pudz¢

_/\

@ We define

» the vector of conservative variables w = (p, pu, E)T,
» the flux function f(w) = (pu, pu?® + p, u(E + p)) 7T,
» the source term s(w) = (0, —p, —PU)T7

to rewrite the system into the compact form
Orw + O f (w) = s(w)0;¢.
@ The set of physical admissible states is

Q:{w€R3, p >0, E—pu2/2>0}.



The system of Euler equations with gravity

fé?tp + Ozpu =0
Ospu + Oz (pu® + p) = —pds
OtE + 0 (u(E + p)) = —puds¢

_/\

Steady states at rest

At the continuous level, the steady states at rest are governed by

{u = 0,
Oyp = —p0;d.

We cannot obtain an explicit expression of all the steady states.
— We have to define the steady states at the discrete level.



the steady states for Euler with gravity may be complicated

for any given
temperature profile
you can find a
hydrostatic
equilibrium

QRN
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there are some well-balanced methods for Euler with gravity in the literature:
they maintain specific equilibria,

- Randy LeVeque

- Chi-Wang Shu

- Roger Kappeli, Sid Mishra
- Maria Lukacova

maintains all equilibria

- Alina Chertock



jointly with Praveen Chandrashekar:

“Higher oder entropy stable well-balanced schemes for Euler equations with gravity”,
SIAM J. Sci. Computing (2015)

maintains specific equilibria: ideal gas

9 9 Y
E(WH%(ZHW)— P
OE 0 99
o T g (P pu=—puzs
oq  of _ |°| o0
ot " or | 7| oz
pu.




Di
| Dilg_

dqz 'L’—|—% — fz_% Y (ewu_% . e%;) 0
e ¥

Well-balancing means preserving for the numerical scheme the following:

u; = 0, p; exp(—1;) = const, )

We show that with fluxes like Roe or HLLC this is can be achieved.



=29

Rayleigh-Taylor
instability in radial
gravitational field
using a well-
balanced method

darker color
indicates larger
values



Christophe Berthon, Vivien Desveaux, Christian Klingenberg, Markus Zenk:

A well-balanced scheme for the Euler equation with a gravitational potential
Proceedings of the 7th International Symposium on Finite Volumes for Complex
Applications (2014)

Christophe Berthon, Vivien Desveaux, Christian Klingenberg, Markus Zenk:
A well-balanced scheme to capture non-explicit steady states. Part Il: Euler with gravity
International Journal for Numerical Methods in Fluids (2015)

this method maintains all equilibria



Discrete steady states and well-balanced scheme

@ Space discretization: cells [z;_1 /9, T;11/2) With constant size
Az = Lit1/2 — Li—1/2

@ w;': approximation of the solution of the system at time t" on the
cell [1;_1/2,Ti11/2)

1 Tiy1/2
@ Discretization of the potential ¢: ¢; = — / o(x)dx
Az Li—1/2

Definition (Discrete steady states)

An approximation (w]);cz is a discrete steady state, if for all ¢ € Z, we

have PR+ T
u =0, and pig —pi = ——"5"(Pit1 — P1).

Definition (Well-balanced scheme)

A numerical scheme is well-balanced if for all discrete steady state
(w?)icz, the scheme satisfies w ™ = w?, for all i € Z.




illustrate the idea of relaxation solver for a
scalar conservation law

Jin - Xin relaxation:

replace: us + f(u), =0

b)’Z Ut + Uy =

V¢ + aqu =



Goal: AR
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\\\\\ |
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constant stcke 2 - by the Riemann solution of the relaxation
constant state | system

constant state 3

speed —

speed a

need to determine the speeds for the
waves (an equality) -

S €T satisfying the lr.:ecoyuahty of the
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constant state |




the role of a?

consider Riemann problem for the two sets of equations: 1;; -+ f(u)w — ()

Ut + Uy =

wave of the 1

original equation
vy )

V¢ + a2ux =

speed a

subcharacteristic condition:
—a < f'(u) <a

X




The Riemann solution to the relaxation system is easy to find because it is
linearly degenerate.

In addition this approximate Riemann solver satisfies a discrete version of the
entropy condition:

At
n(UM) —n(U]) + A—az-(GiH/z —Gi_172) <0

entropy m
numerical entropy fluz function G(U;, U,)

It is possible to determine the speeds of the approximate Riemann solver such
that it is quite accurate while still maintaining the subcharacteristic condition

which implies entropy consistency.



Summary for approximate Riemann solver via
relaxation:

® with pencil and paper determine the stability
condition

® for coding determine an algebraic formula for
“optimal” speeds

® this will guarantee stability (“positivity”)



In this spirit we embed system of compressible gas dynamics into a
more “‘complete model”.

For smooth solutions of the Euler equations
Pt ‘|‘2 (pu)z =0
(,OU)t T (pu ‘|‘p)w =0
Ei+ (w(E+p) =0

we can write an evolution equation for the pressure:

(op)t + (pup)s + p°p'(p)uz = 0

Replace p by a new dependant variable 7 and let ¢ replace the soundspeed p+/p’(p)
p— T

(pm)e + (pmu + c*u)y = p Siliciu (1990), Coquel, et.al. (1999)

€



the enlarged system has a small parameter € > 0 s.th.

e >0  enlarged system

e =0  original system pt + (pu)z =0
(pu) + (P’Ufz + 7))z =0
Ey+ [(E+ m)ule =0

(pm)i + (o + Py = P

The constant c replaces the sound speed, which is a nonlinear function.

The advantage of the extended system is that by making the pressure a new
dependent variable it easy to solve the Riemann problem for the homogeneous
part of the extended system (all eigenvalues are degenerate).



wave speeds for the
system of extended
gasdynamics:

U (multiplicity 2)

waves for the original
system of gasdynamics:

X



Absolutely essential is the choice of the constant C (replacing the sound speed).

c> p\/p(p) “subcharacteristic condition™

more precise: +

The choice of C determines the “stability’ of u— u

. . P J— Cr
this relaxation.  U* UY u+ =

It ensures an entropy inequality.

This is analyzed a la Chen, Levermore, Liu l UT
(1994) allowing for rigorous justification. X
dp
Vp € lpi,pf], P (—) < ¢
l 8,0 . l

Vo € lor,py], P (—) <
S




For practical purposes, in order to devise a formula for a
numerical scheme, one has to choose a particular value for C
out of the possible values the inequality allows for.

(
o = VP e <pp Vs “”_“’“) |
if pp —pr >0, < +
;—T =P (pr) +oz<pl ;pr + uy —ur> :
- — + Bouchut (2004)
p—=m+(p—<p)+) |
if pp —p1 <0, < +
& p’(pz)+oz<prpl+uz—ur> :
W4 Cr .

This ensures the optimal properties of this approximate Riemann solver.



lllustrate relaxation solver in phase space

additional 7"‘
dependent phase space:
variables of the
extended system __
m =
L equilibrium
manifold
pt + (pu)z =0

(pw)t + (pu? + ) = 0

A (pm)t + (pru + Pu)y = po Z :

dependent variables of the original system

p,u, b

the solution of -
the original Pt = (pu)x -

0
system lives (pu): + (,0162 +p)e =0
e B+ (w(BE+p)) =0



additional

dependent
variables of the
extended system

Numerical procedure in phase space:

evolution

nAt

O(n+ 1)At™

equilibrium

projection
manifold

the solution of
the original
system S lives
here

dependent variables of the original system

This results in a numerical method for the original system.



It is possible to extend the entropy S of the original system of gas dynamics to an entropy Sextended

of the system of extended gas dynamics
such that for ¢ — (0 the extended entropy converges to the original entropy.

T

Se:z tended

equilibrium
manifold

Sea'tended

p,u, &




this procedure translates Riemann solvers for the extended system
to Riemann solvers for the original system

® preserves p > ()

® can handle vacuum

® this ensures that the “second law of thermodynamics” is
satisfied by the numerical solution of our original system



next we show how to find a relaxation method for Euler with
gravity based on this relaxation idea



The Suliciu model for the Euler equations with gravity

( Otp + Ozpu =0
Oipu + Oy (pu” + ) = —p0dyd
O E 4 0p(u(E + 7)) = —pudy
| Oup + Ou(u(pm + 1)) = L(p(p, €) — )

/"

The relaxation parameter v > 0 must satisfy the Whitham condition:
or subcharacteristic cond.:

v > ,0202.
Figenvalues Riemann invariants
ui% ui%, T F vu, V26—%2, 0)
u (X2) u, W, P
0 pU, 7T—|—V7f, Vze—%z, gb—l-“;—%

Difficulties to compute the solution of the Riemann problem:

@ the order of the eigenvalues is not determined a prior:

@ there are strong nonlinearities in the Riemann invariants for the

eigenvalue 0



The Riemann problem

|4

u__
L™ pp

NEXT: new idea: artificially change the speed of u



Relaxation model with moving gravity

( atp T axpu =0
Orpu + Oy (pu? + m) = —pdya
y OE + O0u(u(E + 7)) = —pudya
Orpr + O (u(pm + v?)) = L(p(p, €) — )
Osa + udya = (¢ — a)

€

\

Eigenvalues Riemann invariants
2
ui% ui%, T F vu, V2e—%, a
u (x3) U

o The order of the eigenvalues is fixed: u — % <u <u+%

@ There is a missing invariant for the eigenvalue u
= we need a closure equation



The Riemann problem

@ 7 unknowns:
u”, P*L,Rv ez,Rv WE,R

@ 6 equations given by the
Riemann invariants
ui%, T F vu, VQG—%2

@ Closure equation:

missing
Solution of the Riemann problem

equations for u* missing

wr =7 +v(up —u') mp =mRr+ v(u" — ugR)
1 u* — ug, I up — u*
pL PL v Pk PR v

T2 2 €2 _ o2




next idea: we introduce two new speeds: u*+0 and u*- o0



Reformulation into a fully determined model

/

Oip + Ozpu =0
Oipu + Oy (pu? + ) = —

Ora + udza = (¢ — a)

8tX_ + (’U, — 5)83;)(_ —
Xt 4+ (u+9)0, Xt =

\

— 4 x+
X;Xaxa

p—X")
L(p—XT)

OE + 0u(u(E + 7)) = — X 5" 49,4
 Brpm + Bu(ulpm +12)) = £(p(p, €) — )

Eigenvalues Riemann invariants
ut’ ut %, TFvu 1/26—%2, a, X, XT
u (x3) u, W+X_‘5X+a, X, XT
U—0 o, u, e m a X
U+ 0 o, uw, e w a X

@ For 0 small enough, the order of the eigenvalues is fixed:

u—s<u—d<u<ut+d<u+t;

@ There is a full set of Riemann invariants




The Riemann problem for the reformulated model

@ 7 unknowns:
>k %k b3 %k
U PrLRr» ¢L.R> TLR
@ 7 equations given by

the Riemann invariants

2
v 2 Uy
ui;, TFru, vie—I,

— +
W+X gX a

@ The equations coming from the Riemann invariants v+%, =5vu and
V2 e—% are the same as in the previous model.
L X5 4+X; o
@ The last equation 1S[7T}kz — 1} = ——L5~L(ar — aL)]. For an initial
data at the relaxation equilibrium (i.e. m = p(p, €), a = ¢,
X+ = p), we recover the closure equation of the previous model.

pi tPi.
Div1— D = 5 (Pit1 — @)

this i1s our well-balanced condition !




another way of seeing this is to say:

we can solve the missing equations for the “changing the speed u* ”
relaxation problem by using the well-balanced constraint.

artificially change the speed of u*



The relaxation scheme

The relaxation scheme

w, = w, — A_:L‘ (F(w wz—|—1) F(wi—lv w; )>

[ 1

+§(8+(wn )¢ Gi—1 + s (ul ¢z’—|—1;¢i>,

n
L 'U] w: . Ww:
9 7—1° Al’ 7 Z—I—l) A

where the numerical flux is defined by

T .
prur, prui+pn, uL(Ep+pr)) if up,—2->0,
T
uw*,  pi(ut)i4mr,  ur(EF —|—7TL)) ifuL—%<O<u*,

L
f(wr,wr)=4 T v
pru*,  ph(u*)? 4y, ur(EL+ )) if u*<0<uR—|—£,

T , y
\(pRqu PRUZDR, UR(ER+pR)) lfUR+£<0>

and the numerical source terms are defined by

« + + AT
st (wr,wr)=—(sgn(u*)+1) (0, ZLZLE  PLEPR 4 ) "

_ + + T
s~ (wr,wr)=(sgn(u*)—1) (0, PLgPl, PLEPR 4> ) -




Properties of the relaxation scheme
Theorem (Well-balancedness)

The relaxation scheme preserves the steady states at rest:

u =0

VZGZ, ’ n Hn éVz’EZ,wT‘H:w”
n _ .n __ _ Pi pz—|—1(¢. _¢) ( v
Dit+1 Di = 2 1+1 7

Theorem (Robustness)

Assume the parameter v satisfies the following inequalities:

* 2 2 * 2 2
v * v T, —pbL Tp — PR
up — - < U <uR+pR, e + 57— >0, egp+ 57— >0.

Assume the following CFL condition is satisfied:
At 1

— n 4+ N < —
N juit £ v/p7| < 2
Then the relaxation scheme preserves the set of physical states:

VieZ, p >0and el >0 = Vie€Z, p™ >0 and el > 0.
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Perturbation of an equilibrium state; profile of the pressure disturbance at time t = 0.2



This is a first order well-balanced method. This can be made
higher order by using a variant of “surface gradient method” from
shallow water equations:

use 1 instead of h for reconstruction

Z
i
—
! Y A
_______ R R
h(z, 1)
H(z) (e, t)




Numerical test: perturbation of an hydrostatic atmosphere

@ Perfect gas law: , Au(x.T)
P = (7 — 1) (E — PpU /2) 01l 1sto;rder
@ Constant gravitational WS
field: ¢(z) = gz 0.05|
@ Steady state wg(z): k
hydrostatic atmosphere 0
( 1
ps(z) = (1 _ 77_19@ T o8l
\ us(z) =
0.1}
\ps(x — /03(517)7 ' ' '
0 0.5 1 1.5 2

o Boundary condition: Final time Perturbatlon in velocity du(x, T')
computed with 1.024 cells.

U(O, t) — O'lsin(Gﬂ-t) The reference solution is computed with
@ Perturbation: 32.768 cells with the first-order relaxation

5’(1}(:[}7 t) — w(x’ t) _ ws(x) scheme.



jointly with Ohlmann, Rbpke, Springel, Zenk:
“A second order well-balanced scheme on multi-dimensional unstructured grid’,
work in progress

The AREPO code
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Evrard’s collapse test

initial condition:

0 forr > R.

o) = {M/(anZr) forr < R




Evrard’s collapse test

(o |
HO7
60\ d(o?) Qo () — M/Q2nR?*r) forr <R
e ((\ \J ('\\-) plr) = 0 forr > R.
0.18 ! ! ! ! L !
error without well-balancing —°
0.16 | e J
==+ le5 nowb
R EUEPRPPPEEL L =+ 5e5 nowb
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jointly with Ujjwal Koley and Rony Touma:
“Well-balanced unstaggered central schemes for the Euler equations with gravity”,
SIAM J. Sci. Comp (2015)

We construct a non-staggered central scheme, combine it with the
“surface gradient method” in order to get a second order well-balanced
scheme.

maintains specific equilibria: isothermal stationary solutions
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Perturbation of an equilibrium state; profile of the pressure disturbance at time t = 0.2
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perturbation of an equilibrium state
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circular Riemann problem: profile of the density



For the Euler equations with gravity

pi + (pu)z + (pv)y =0,

(pu)e + (pu? +p), + (puv)y = —pds,

(pv)e + (puv)s + (pv° +p), = —pgy,
Ei+(E+pu), + (B +p) V), = —pugy — pud,

we found a well balanced methods.

Consider flow that is a perturbation of the hydrostatic equilibrium, the flow is then
close to incompressible flow.

Thus we need a solver that

- maintains hydrostatic equilibria well
- can solve low (as well as high) Mach number flow well.



This is work in progress.

The finite volume well-balanced solver should in satisfy

correct behavior of its dissipation matrix at low Mach numbers

ensure kinetic energy is maintained near the incompressible regime

be a linearly stable scheme

the inversion of the large system of equations arising from implicit time
discretization should have a good condition number



Numerical simulation of the code of the Fritz Rdpke code for stellar
convection.




stellar atmosphere heated from below

gravity

temperature 1e8 density

6.2+ N mass fraction t=48.91s

0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 L0 L5 2.0 ‘
z [cm] le8 z [cm] le

720 735 750 7.65 7.80 7.95 810 825 840
log;o T’




t=11.12s

density

how the bottom fluid gets
dredged up

gravity

6.4 51T,
6.2
6.0
).8
0.6 F
—4

fluidt gets heated from below ! <107



Thank you for your attention!



